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Weibull statistics for expanded ring flexure

tests of ceramics

S. G. SESHADRI, M. SRINIVASAN

The Caborundum Company, Niagara Falls, New York 14302, USA

An analysis has been developed for obtaining tensile strength distribution parameters
from expanded ring flexure tests by considering the non-uniform stress distribution
which occurs in the test. It is shown that expanded ring flexure strengths overestimate
the tensile strength by approximately 5 to 10%.

1. Introduction
Ceramic materials are generally brittle and nom-
inally identical batches of specimens may exhibit
large variations in fracture stress. In order to
compare strength values obtained from laboratory
tests using a limited number of specimens of
identical size and shape for actual design purposes,
it is necessary to establish adequate statistical
characterization of the strength distributions. It is
generally known that fracture of brittle materials
is caused by tensile stresses applied to the intrinsic
crack-like flaws in the material. On the other hand,
compressive forces resist crack opening. Thus the
characterization of tensile strength distribution
becomes essential for design with ceramics includ-
ing lifetime predictions for components in service.
Weibull statistics developed for isotropic, homo-
geneous materials are widely accepted as represent-
ing strength distributions of ceramics. This analysis
contends that the strength distributions can be
fully described by three material parameters: a
shape parameter, m (Weibull modulus); a scale
parameter, ¢, (characteristic strength); and a
minimum strength parameter, ¢,. The failure
probability of a body in a particular stressed state
is obtained from these parameters by first summing
the risks of rupture of every element in the body
and calculating the total failure probability of the
material. These parameters are generally evaluated
from various laboratory testing techniques. Tensile
testing of ceramics is experimentally difficult to
perform because their low toughness results in grip
failures so that other easier testing techniques like
flexure tests and expanded ring tests are used to
evaluate Weibull parameters. The non-uniform
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stress distributions existing in the specimens during
the former tests lead to strength values (maximum
applied stresses) greater than the actual tensile
strengths. The expanded ring tests are closer to the
uniaxial tensile test in estimating brittle material
strengths for reasons discussed later and appear to
be more realistic in predicting failure at lower
stress levels. In this paper, an analytical derivation
of Weibull statistics applied to expanded ring tests
has been developed for both volume controlled
and surface controlled flaw populations.

2. Weibull theory

When the strength of an isotropic, homogeneous
brittle material is governed by volumetric flaw
population, Weibull theory predicts the probability
of failure at a given stress state as

P=1-exp— {_[V(G—;T"“-)deJ

foro > o,
and

&)

=0 foro < ay,

where the integral term is known as risk-of-rupture.
When the strength is controlled by the surface flaw
population, the integral is performed over the
surface area of the body and o represents the two-
dimensional stress distributions at the surface. It
may be noted that this theory also accommodates
the size effects for the material through the surface
and volume terms in Equation 1. In the case of
uniform tension, the integral can be evaluated
easily. When a non-uniform stress distribution is
present, this integral must be performed over the
total specimen volume (or area). Such calculations
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Figure 1 Specimen configuration for expanded ring flexure
tests.

for bending tests have already been performed by
Weil and Daniel [1].

3. Analysis for an expanded ring in tension
The specimen configuration for the expanded ring
test is shown in Fig. 1. The circumferential tensile
stress distribution is much greater than the radial
stress distribution and is assumed to determine
failure in these specimens. The stress distribution
is given by

_ . rep
"1+ @]

where b and a are, respectively, the outer and inner
radii, 7 is the distance from the centre and o, is
the maximum stress in the specimen. ¢,,, occurs at
r = a and is given by

_ AL+ 0]
=1 @

@

where P; is the applied internal pressure. If o, is
assumed to be the minimum strength of the
material, the radial distance, r,, at which 0 = g,
can be obtained from Equation 2.

1+ (bfry)’

Tu = Im T ey

G
The radial distance at which minimum strength
occurs, ry, may be greater or less than b. When
ru > b, all the specimen volume (or surface) contri-
butes to the risk-of-rupture and when r, <b only
the volume (or surface) within the bounds r =a
and r=r, contributes to the risk-of-rupture. In
the two-parameter case, o, becomes zero (or r, is
non-existent). This condition is reflected in the
complex situation (from Equation 4)

&)

The three-parameter Weibull analysis can be carried
out for both volumetric and surface flaw conditions
and two-parameter results can be easily obtained
by invoking the condition that (b/r,)* =— 1.

3.1. Volumetric flaw consideration
The risk-of-rupture, R, is given by

o— o, \™"
= a4 6
R=[ ( - ) d ©)
and
V = a(?—a*)t 7
where ¢ is the thickness.
— m
R ='( € (——-—0 Ou) 2mtrdr
a 00
_ 2V a2m ﬁn_ m
Y Yy S i b
Te
x [ Lo/ = @ rdr, (8)
a

where 7, = r, whenr, <b and r, = b when r, > b.
The risk-of-rupture can be expressed as

R = kV (w\)m’
0o

®
where k,, is defined as the loading factor and
L = 2
Y@ =2 [0y — )T

x |1y = @y . (10)

The loading factor for two-parameter distribution
is obtained by invoking the conditions that
(bfr)* =—1and r,=b. Then

2
(b* —a*) [(bfa)* + 1]™

k, =

b
xf [1+ (b/P2]™ rdr. (11)
a
3.2. Surface flaw consideration
The risk-of-rupture integral is written as
0—0,\"
R =| |/—2| ds. 12
[ ( - ) s (12)

This surface integral can be divided into three
parts, each corresponding to inner cylindrical sur-
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face, outer cylindrical surface and two end flat sur-
faces, respectively.

3.2.1. Inner cylindrical surface
The applied stress on this surface is uniform and is

given by
0 = Op,.

The risk-of-rupture for this stress state is given by

Om — O\
R, = 27mt(m u) .
Oo

(13)

3.2.2. Outer cylindrical surface
This surface contributes to risk-of-rupture only
ifry>b.Forr,>b,

2
7T Im U+ b))
and (L= GrT" [0 —0a]™
Ra = bt [(b/a)?—(b/rm'"[ % } :
(14)
Forr, <b,
R2 = 0. (15)

Equations 14 and 15 can be combined and written

as
_ (b/re)z_(b/ru)2 ™ Om — Ou m
Ra = bt {(b/a)z—(b/ru)z} ( o ) :

(16)
3.2.3. End flat surfaces

The two end flat surfaces are subjected to non-
uniform stress distribution. The risk-of-rupture
expression is similar to Equation 8.

~Te
{ [ “16m? = oy rdr}
[(b/a)* — (B/ra)*I™
. (zm_l) .
40}
The total risk-of-rupture for all surfaces is given by

R = Rl +R2+R3

= ksS (u)m ,
Tg

where S is the total specimen area, and

R3=4T(

a7

(18)

S = Onlar + bt + b? —q?].

The loading factor k¢ for three-parameter case can
then be written as
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1
T (@t +br+ b —a?)

(bfr)* — (b/ruf] m
(b/a)* — (bfr,)*

ks

x{at+bt

2
" Glay = @l

x [/ — @1 rdr] . (9)

Equation 19 can then be reduced to the two-

EXPANDED RING TESTS [6/a=1.1)

parameter case by equating (b/r))?=-—1 and
re=bh.
1
ks = 2 2
(at + bt +b°—a)
2 m
X{at+bt|———
{” [1 ¥ (b/a)z}
+ 2
1+ (b/a)?
X j "1+ (b)) rdr}. (20)
a
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Figure 2 Loading factors for various testing methods:
(a) Centre point loading; (b) third point loading (four-
point bending); (c) fourth point loading (four-point
bending).
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Figure 3 Loading factors for two-parameter Weibull form (o, = 0) for Weibull modulus, m, values indicated on the

curves: (a) volume-based and (b) surface-based.

4. Discussion

The loading factors for an expanded ring test are
functions of Weibull modulus, m, specimen
dimensions and the ratio of minimum strength
parameter to the maximum applied stress in each
specimen. The fact that the loading factors are less
than unity for all practical conditions differentiates
this test from tensile tests where the loading factor
is unity. However, the deviation of the expanded
ring flexure strength from the tensile strength is
less significant than for bend tests as shown later.
Although this test simulates uniaxial tensile testing
conditions much better than any other test methods
(excluding tensile testing), the nomenclature of

.0
VOLUME=~ BASED

0.8}
S
o o6l
Q
<
.
o 04F
z
o
g o2}
|

0

1.0 1l 2 13 1.4 15
{a) b/a

tensile strengths for expanded ring flexure strengths
is misleading [2, 3]. The loading factors for various
test conditions for practical specimen configur-
ations are shown with respect to Weibull modulus
values in Fig. 2. One can appreciate how closely
the expanded ring tests simulate uniaxial tensile
conditions compared to various flexure tests. The
expanded ring flexure strengths will overestimate
the tensile strengths of most ceramics by about
4 to 8% compared to the bend tests which over-
estimate the tensile strength by more than 30 to
40%. In other words, extrapolation into the low
tensile strength range for obtaining the low failure
probability of brittle components can introduce
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Figure 4 Loading factors for three-parameter Weibull form for a Weibull modulus, m, of 3 and « values indicated on the
curves (@ = 0y/0mayx): (2) volume-based and (b) surface-based.
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TABLE I

Material Flaw Distribution Estimate of Weibull parameters
population type Corrected From Jones and Rowcliffe 3]
Hot-pressed silicon nitride
Billet A Volume oy =0 m=8.9 9.4
a =254 mm o, = 425 MPa 450 MPa
b=279mm R =0.9889 -
t= 16
i o, = 47MPa m=18 -
o, =378 MPa -
R = 0.9905 -~
Surface oy =0 m=238.9 9.4
6, =595MPa 613.0MPa
R =0.9889
oy =47MPa m="1738 -
o, =553MPa -
R = 0.9906
Hot-pressed silicon nitride
Billet B Volume oy=0 m=97 11.0
a =254 mm g, = 391 MPa 412 MPa
b =27.9mm R =10.9876 -~
t= T6mm oy = 125 MPa m=6.3 -
6, = 265MPa -~
R =0.9882 -
Surface ay=10 m= 9.7 11.0
6, = 533 MPa 537MPa
R =0.9876 -
oy = 108 MPa m=6.8 -
g, = 438 MPa -
R =0.989%4 -
CVD SiC Volume oy =0 m=4.9 5.4
a =254 mm g, =310MPa 312MPa
b =28.45mm R =0.9967 -
¢=127 mm oy = 20 MPa m=45 -
o, =291 MPa -
R =0.9957 —
Surface oy =0 m=4.9 5.4
g, = 540MPa 514 MPa
R =0.9967 -
oy = 20MPa m=4.5 —
o, =534 MPa _
R =0.9959 -

significant errors if bend test results are used for
constructing tensile strength distributions. The
expanded ring test data will alleviate this problem
to a great extent.

It is also seen in Fig. 2 that the load factor
differences between the bend tests and the ring
tests increase rapidly as the Weibull modulus
increases. However, the ratio of the corresponding
strengths is far less affected by the Weibull modulus
as given by
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oy k2 i/m
() - (k) | @
where 0y, 05, k; and &, represent the strengths and
loading factors for two testing techniques.

The loading factors for a two-parameter case
are much simpler (Equations 11 and 20}, especially
for volumetric flaw-controlled strength distri-
butions where &, is a function of Weibull modulus,
m, and the ratio of the radii of the specimen, (b/a).



TABLE II

Material Flaw Estimate of Weibull distribution parameters
population om o, (MPa) o (MP2) R
RBSN (small) Volume 7.1 118 - 0.9616
a =254 mm 24 52 66 0.9797
b=30.5mm
£= 1.6mm Surface 7.1 167 - 0.9616
2.2 140 71 0.9825
RBSN (large) Volume 7.0 120 - 0.9150
1.1 83 71 0.9598
Surface*® 7.0 160 - 0.9150

*The data does not converge to give a meaningful estimate of the distribution parameters with oy, other than zero.

The surface flaw conditions also include the
absolute value of one of the radii and the thickness
of the specimen as additional variables that affect
the load factor k. The variation of the load factor
with respect to ratio of the radii and Weibull
modulus for fixed conditions such that inner
radius and thickness of the specimen are equal to
unity, is shown as a family of curves in Fig. 3.
Again, the deviation of the load factor from unity
is clearly seen. For a given condition, the surface
load factor kg is greater than the volumetric load
factor k..

In the three-parameter case, one more variable
needs to be considered: the ratio of minimum
strength to maximum applied stress (flexural
strength) of each specimen. Fig. 4 shows the
relationship between these variables for par-
ticular values of Weibull modulus and specimen
dimensions.

5. Application to test results

The Weibull parameters ean be estimated from
a test population by an iterative regression pro-
cedure, For surface and volume flaw consider-
ations, the Weibull distributions can be written,
respectively, as

Inln [(1 iP)} = mln{o, —0oy) +Ink,

14
+1n |5

mIn (0, — a6y + In kg

S
+In{—]|.

For the two-parameter case, 0, = 0. A least-square

(22)
and

1
Inln [(1 —P)] =
(23)

fit between Inln (1/1 —P) and In ¢, provides a
slope equal to m. From the intercept one can
calculate oy by using appropriate values of m and
k. The g, is then assumed and a linear regression is
carried out between Inln(1/1—P)—Ink and
In (0, — 0. Initially In k is assumed to be zero
to obtain an estimate of m. This step is carried out
iteratively by updating the load factor for each m
estimate until an insignificant change in these
parameters is obtained. This whole procedure is
repeated to optimize the minimum strength
estimate (taken to correspond to the best curve
fit, as indicated by the maximum in the correlation
coefficient for the regression by logically varying
the assumed minimum strength value.)

Jones and Rowcliffe [3] have obtained extensive
data on silicon-based ceramics by the expanded
ring flexure testing technique. They estimated the
Weibull parameters by assuming uniform stress
distribution in the specimen with the strength
equalling the maximum fracture stress in the speci-
men at the inner surface. This translates to the
assumption of a loading factor of unity. Our
corrected estimates of Weibull parameters are
compared with their results in Table I. It should
be noted that o, has the same units as stress and
the loading factors have either reciprocal volume
or surface area units. Jones and Rowcliffe [3] indi-
cated that some of the results on reaction-bonded
silicon nitride (RBSN) were better described by
three-parameter distributions than with ¢,=0.
They did not give any estimates of Weibull
parameters for RBSN. We calculated both two-
and three-parameter estimates for their data on
RBSN. The results are given in Table II.

In general, the three-parameter analysis improves
the regression coefficient (except in the case of
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chemical vapour deposited (CVD) SiC). Of course,
this improvement alone does not justify the use of
the three-parameter distribution. Another obser-
vation is that surface flow considerations seem to
fit the data better analytically and this finding is
supported by the fractographic observations made
by Jones and Rowecliffe [3] that fracture mostly
originated at the surface of the specimen.

6. Conclusions

The expanded ring flexure tests offer a good alter-
native to tensile tests, but the statistical distri-
bution parameters must be corrected for non-
uniform stress distribution which exists in the test
specimen. An analysis and algorithm for obtaining
these parameters is provided and has been applied
to published literature data for silicon-based
ceramics.
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