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Weibull statistics for expanded ring flexure 
tests of ceramics 
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An analysis has been developed for obtaining tensile strength distribution parameters 
from expanded ring flexure tests by considering the non-uniform stress distribution 
which occurs in the test. It is shown that expanded ring flexure strengths overestimate 
the tensile strength by approximately 5 to 10%. 

1, Introduction 
Ceramic materials are generally brittle and nom- 
inally identical batches of specimens may exhibit 
large variations in fracture stress. In order to 
compare strength values obtained from laboratory 
tests using a limited number of specimens of 
identical size and shape for actual design purposes, 
it is necessary to establish adequate statistical 
characterization of the strength distributions. It is 
generally known that fracture of brittle materials 
is caused by tensile stresses applied to the intrinsic 
crack-like flaws in the material. On the other hand, 
compressive forces resist crack opening. Thus the 
characterization of tensile strength distribution 
becomes essential for design with ceramics includ- 
ing lifetime predictions for components in service. 

Weibull statistics developed for isotropic, homo- 
geneous materials are widely accepted as represent- 
ing strength distributions of ceramics. This analysis 
contends that the strength distributions can be 
fully described by three material parameters: a 
shape parameter, rn (Weibull modulus); a scale 
parameter, Oo (characteristic strength); and a 
minimum strength parameter, Ou. The failure 
probability of a body in a particular stressed state 
is obtained from these parameters by first summing 
the risks of rupture of every element in the body 
and calculating the total failure probability of the 
material. These parameters are generally evaluated 
from various laboratory testing techniques. Tensile 
testing of ceramics is experimentally difficult to 
perform because their low toughness results in grip 
failures so that other easier testing techniques like 
flexure tests and expanded ring tests are used to 
evaluate WeibuU parameters. The non-uniform 
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stress distributions existing in the specimens during 
the former tests lead to strength values (maximum 
applied stresses) greater than the actual tensile 
strengths. The expanded ring tests are closer to the 
uniaxial tensile test in estimating brittle material 
strengths for reasons discussed later and appear to 
be more realistic in predicting failure at lower 
stress levels. In this paper, an analytical derivation 
of Weibull statistics applied to expanded ring tests 
has been developed for both volume controlled 
and surface controlled flaw polSulations. 

2, Weibull theory 
When the strength of an isotropic, homogeneous 
brittle material is governed by volumetric flaw 
population, Weibull theory predicts the probability 
of failure at a given stress state as 

�9 , v \  ao / 

for o > Ou 
and (1) 

= 0 foro~< ~u, 

where the integral term is known as risk-of-rupture. 
When the strength is controlled by the surface flaw 
population, the integral is performed over the 
surface area of the body and o represents the two- 
dimensional stress distributions at the surface. It 
may be noted that this theory also accommodates 
the size effects for the material through the surface 
and volume terms in Equation 1. In the case of 
uniform tension, the integral can be evaluated 
easily. When a non-uniform stress distribution is 
present, this integral must be performed over the 
total specimen volume (or area). Such calculations 
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Figure 1 Specimen configuration for expanded ring flexure 
tests. 

for bending tests have already been performed by 
Well and Daniel [ 1 ]. 

3. Analysis for an expanded ring in tension 
The specimen configuration for the expanded ring 
test is shown in Fig. 1. The circumferential tensile 
stress distribution is much greater than the radial 
stress distribution and is assumed to determine 
failure in these specimens. The stress distribution 
is given by 

[1 + (b/r) 21 
o = o m [1 + (b/a)2] ' (2) 

where b and a are, respectively, the outer and inner 
radii, r is the distance from the centre and Om is 
the maximum stress in the specimen, a m occurs at 
r = a and is given by 

ei [1 + (b/a) ~] 
om - (b/a) 2 - 1  ' (3) 

where Pi is the applied internal pressure. I f  au is 
assumed to be the minimum strength of  the 
material, the radial distance, ru, at which o = Cru 
can be obtained from Equation 2. 

1 + (b/ru) 2 
Ou = Om 1 + (b/a) 2 " (4) 

The radial distance at which minimum strength 
occurs, ru, may be greater or less than b. When 
ru > b, all the specimen volume (or surface) contri- 
butes to the risk-of-rupture and when ru < b only 
the volume (or surface) within the bounds r = a 
and r = r u  contributes to the risk-of-rupture. In 
the two-parameter case, o u becomes zero (or ru is 
non-existent). This condition is reflected in the 
complex situation (from Equation 4) 

The three-parameter Weibull analysis can be carried 
out for both volumetric and surface flaw conditions 
and two-parameter results can be easily obtained 
by invoking the condition that (b/ru) 2 = -- 1. 

3.1. Volumetric flaw consideration 
The risk-of-rupture, R,  is given by 

R =~v (a--~ (6) 
\ o 0 /  

and 
V = n ( b 2 - - a 2 ) t  (7) 

where t is the thickness. 

R = I :  e (O-----~-~lm 2ntrdr 
Oo ] 

2 V a 2m [r rn 

(b 2 - a b  (b ~ + a~)m I--I\ Oo] 

X f s  (8) 

where r e = r u when r u < b and r e = b when ru > b. 
The risk-of-rupture can be expressed as 

R = kvV(~m--~f-~-tm, (9) 
\ o o !  

where k v is defined as the loading factor and 

2 
k v = (b 2 -- a 2) [(b/a): -- (b/ru)2] rn 

r e X fa [(b/r)2 --(b/ru)2lm rdr. (10) 

The loading factor for two-parameter distribution 
is obtained by invoking the conditions that 
(b/ru) 2 = -- 1 and r e = b. Then 

2 
kv = (b 2 _ a z )  [(b/a) 2 + 11 m 

x f :  [l +(b /r )2 lm rdr. (1 l )  

3.2. Surface flaw consideration 
The risk-of-rupture integral is written as 

R = f s  ( ~ t m d s "  (12) 
\ Oo/  

This surface integral can be divided into three 
parts, each corresponding to inner cylindrical sur- 
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face, outer cylindrical surface and two end flat sur- 
faces, respectively. 

3.2. 1. Inner cyl indrical surface 
The applied stress on this surface is uniform and is 
given by 

0 r = Orn. 

The risk-of-rupture for this stress state is given by 

R 1 = 27ra t ( em- -~  m (13) 
Do 1" 

3.2.2. Outer cyl indrical surface 
This surface contributes to risk-of-rupture only 
i f ru > b. For ru > b, 

2 

a = a ~  [1 + (b/a) ~1 
and 

[1 - - (b / ru )2]  m [Om--(lulra 
Rz  = 2zrbt [ ( ~ ~ ] r n  [ o0 ] " 

(14) 
For r u < b, 

R2 = 0. ( is)  

Equations 14 and 15 can be combined and written 
as . ,l(b/r~ ' "  m 

R z =  2nbt [ (b/a)2--(b/ru)2 J \ go / 

(16) 

3.2.3. End f lat surfaces 
The two end flat surfaces are subjected to non- 
uniform stress distribution. The risk-of-rupture 
expression is similar to Equation 8. 

R3 = 4~ [(b/a) 2 -- (bird)2] m 

x ( - ~  ~ " (17) 
\ Do I "  

The total risk-of-rupture for all surfaces is given by 

R = R I + R z + R 3  

= ksS (a-m--~ m , (18) 
\ ~  

where S is the total specimen area, and 

S = 27r[at + bt + b 2 - a 2 ] .  

The loading factor k s for three-parameter case can 
then be written as 

1 
k s = (at + bt + b 2 - -  a 2) 

x { at + bt [ ( ~ - -  (b/ru)2] rn 

L( / ) -(blr.)~J 
2 + 

( b / a )  ~ - ( b / r ~ )  ~ 

• (19) 

Equation t9 can then be reduced to the two- 
parameter case by equating (b/r~) 2 = - - 1  and 
re=b.  

1 
k s = 

(at + bt + b 2 - a  ~) 
m 

x a t + b t  l+ (b /a )  i 

2 + 
1 + (b/a) 2 

[re [1 + (b/r) 21m rdr t. (20) X 
Ja 

J 

. . . . .  SURFACE-BASED 

- -  VOLUME-BASED 

TENSILE TESTS 

E X P A ~  

BEND TESTS (bl~ - E) 

4~ b 

g 

O 

O . O l  I 

2 4 6 8 I0 

WEIBULL MODULUS, m 

Figure 2 Loading factors for various testing methods: 
(a) Centre point loading; (b)third point loading (four- 
point bending); (c)fourth point loading (four-point 
bending). 
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Figure 3 Loading factors for two-parameter Weibull form (Ou= O) for Weibull modulus, m, values indicated on the 
curves: (a) volume-based and (b) surface-based. 

4. Discussion 
The loading factors for an expanded ring test are 
functions of  Weibull modulus, m, specimen 
dimensions and the ratio of  minimum strength 
parameter to the maximum applied stress in each 
specimen. The fact that the loading factors are less 
than unity for all practical conditions differentiates 
this test from tensile tests where the loading factor 
is unity. However, the deviation of  the expanded 
ring flexure strength from the tensile strength is 
less significant than for bend tests as shown later. 
Although this test simulates uniaxial tensile testing 
conditions much better than any other test methods 
(excluding tensile testing), the nomenclature of  

tensile strengths for expanded ring flexure strengths 
is misleading [2, 3]. The loading factors for various 
test conditions for practical specimen configur- 
ations are shown with respect to Weibull modulus 
values in Fig. 2. One can appreciate how closely 
the expanded ring tests simulate uniaxial tensile 
conditions compared to various flexure tests. The 
expanded ring flexure strengths will overestimate 
the tensile strengths of  most ceramics by about 
4 to 8% compared to the bend tests which over- 
estimate the tensile strength by more than 30 to 
40%. In other words, extrapolation into the low 
tensile strength range for obtaining the low failure 
probability of  brittle components can introduce 
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Figure 4 Loading factors for three-parameter Weibull form for a Weibull modulus, m, of 3 and c~ values indicated on the 
curves (~ = Cru/Omax): (a) volume-based and (b) surface-based. 
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T A B L E  I 

Material Flaw Distribution 
population type 

Estimate of  WeibuU parameters 

C o r r e c t e d  From Jones and Rowcliffe [ 31 

Hot-pressed silicon nitride 

Billet A Volume Ou = 0 
a = 25.4 mm 
b = 27.9 mm 
t = 7.6 mm 

o u = 47 MPa 

Surface cr u = 0 

a u = 47 MPa 

Hot-pressed silicon nitride 
Billet B Volume o u = 0 

a = 25.4 mm 
b = 27.9 mm 
t = 7 . 6 m m  

a u = 125 MPa 

Surface cr u = 0 

cr u = 108 MPa 

CVD SiC Volume cr u = 0 
a = 25.4 mm 
b = 28.45 m m  
t = 12.7 m m  

Ou = 20 MPa 

Surface a u = 0 

cr u = 20 MPa 

m =  8.9 
% = 425 MPa 
R = 0.9889 

m = 7.8 
% = 378 MPa 
R = 0.9905 

m = 8.9 
% = 595 MPa 
R = 0.9889 

m = 7.8 

a 0 = 5 5 3  MPa 
R = 0.9906 

9.4 
450 MPa 

9.4 
613.0MPa 

m = 9.7 11.0 
% = 391 MPa 412 MPa 
R = 0.9876 - 

m = 6.3 
% = 265 MPa 
R = 0.9882 - 

m = 9.7 11.0 
oo = 533MPa 537MPa 
R = 0.9876 - 

m = 6.8 
% = 438 MPa 
R = 0.9894 - 

m = 4.9 5.4 
o o = 310MPa 312MPa 
R = 0.9967 - 

m=4.5 
% = 291 MPa 
R = 0.9957 - 

m = 4.9 5.4 
% = 540MPa 514MPa 

R = 0.9967 - 

m =4 .5  
o 0 = 534MPa 

R = 0.9959 - 

s ign i f ican t  e r r o r s  i f  b e n d  tes t  resu l t s  are used  for  

c o n s t r u c t i n g  tensi le  s t r e n g t h  d i s t r i b u t i o n s .  T h e  

e x p a n d e d  r ing tes t  da ta  will  alleviate th i s  p r o b l e m  

to  a grea t  e x t e n t .  

I t  is also seen  in Fig.  2 t h a t  t he  load  f ac t o r  

d i f f e r ences  b e t w e e n  the  b e n d  t e s t s  a n d  the  r ing 

t e s t s  increase  r ap id ly  as the  Weibul l  m o d u l u s  

increases .  H o w e v e r ,  the  r a t io  o f  the  c o r r e s p o n d i n g  

s t r e n g t h s  is far  less a f f ec t ed  b y  the  Weibu l l  m o d u l u s  

as given b y  

3 0 5 6  

w h e r e  o1, 02, k I and  k2 r e p r e s e n t  the  s t r e n g t h s  and  

load ing  f ac to r s  fo r  t w o  t e s t i ng  t e c h n i q u e s .  

T h e  load ing  f a c to r s  fo r  a t w o - p a r a m e t e r  case 

are m u c h  s imp le r  ( E q u a t i o n s  11 and  20) ,  espec ia l ly  

fo r  v o l u m e t r i c  f l aw- con t r o l l e d  s t r e n g t h  distr i-  

b u t i o n s  w h e r e  kv is a f u n c t i o n  o f  Weibul t  m o d u l u s ,  

m ,  and  the  ra t io  o f  the  radii  o f  the  s p e c i m e n ,  (b/a). 



T A B L E  II 

Material Flaw 
population 

Estimate of Weibull distribution parameters 

a m o o (MPa) a u (MPa) R 

RBSN (small) 
a = 25.4 mm 
b = 30.5 mm 
t = 7.6mm 

RBSN (large) 

Volume 7.1 118 - 0.9616 
2.4 52 66 0.9797 

Surface 7.1 167 - 0.9616 
2.2 140 71 0.9825 

Volume 7.0 120 - 0.9150 
1.1 83 71 0.9598 

Surface* 7.0 160 - 0.9150 

*The data does not converge to give a meaningful estimate 

The surface flaw conditions also include the 
absolute value of  one of  the radii and the thickness 
of  the specimen as additional variables that affect 
the load factor k s . The variation of  the load factor 
with respect to ratio of  the radii and Weibull 
modulus for fixed conditions such that inner 
radius and thickness of  the specimen are equal to 
unity, is shown as a family of  curves in Fig. 3. 
Again, the deviation of  the load factor from unity 
is clearly seen. For a given condition, the surface 
load factor k s is greater than the volumetric load 
factor kv. 

In the three-parameter case, one more variable 
needs to be considered: the ratio of  minimum 
strength to maximum applied stress (flexural 
strength) of  each specimen. Fig. 4 shows the 
relationship between these variables for par- 
ticular values of  Weibull modulus and specimen 
dimensions. 

5 .  A p p l i c a t i o n  t o  t e s t  r e s u l t s  

The Weibull parameters can be estimated from 
a test population by an iterative regression pro- 
cedure. For surface and volume flaw consider- 
ations, the Weibull distributions can be written, 
respectively, as 

In in l(1--~p)] 

and 

= m in (am - -  au) + In kv 

+ In ( - ~ I  (22) 

For the two-parameter case, a u 

= m l n ( a  m - a u ) + l n k  s 

+ in (~-~-) . (23) 

= 0. A least-square 

of the distribution parameters with a u other than zero. 

fit between In In (1/1 - - P )  and in o m provides a 
slope equal to m. From the intercept one can 
calculate Oo by using appropriate values of  m and 
k. The au is then assumed and a linear regression is 
carried out between l n l n ( 1 / 1 - - P ) - - l n k  and 
in ( a m -  a~ .  Initially In k is assumed to be zero 
to obtain an estimate of  re. This step is carried out 
iteratively by updating the load factor for each m 
estimate until an insignificant change in these 
parameters is obtained. This whole procedure is 
repeated to optimize the minimum strength 
estimate (taken to correspond to the best curve 
fit, as indicated by the maximum in the correlation 
coefficient for the regression by logically varying 
the assumed minimum strength value.) 

Jones and Rowcliffe [3] have obtained extensive 
data on silicon-based ceramics by the expanded 
ring flexure testing technique. They estimated the 
Weibull parameters by assuming uniform stress 
distribution in the specimen with the strength 
equalling the maximum fracture stress in the speci- 
men at the inner surface. This translates to the 
assumption of a loading factor of  unity. Our 
corrected estimates of  Weibull parameters are 
compared with their results in Table I. It should 
be noted that oo has the same units as stress and 
the loading factors have either reciprocal volume 
or surface area units. Jones and Rowcliffe [3] indi- 
cated that some of  the results on reaction-bonded 
silicon nitride (RBSN) were better described by 
three-parameter distributions than with au = 0. 
They did not give any estimates of  Weibull 
parameters for RBSN. We calculated both two- 
and three-parameter estimates for their data on 
RBSN. The results are given in Table II. 

In general, the three-parameter analysis improves 
the regression coefficient (except in the case of  
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chemical vapour deposited (CVD) SIC). Of course, 
this improvement alone does not justify the use of 
the three-parameter distribution. Another obser- 
vation is that surface flow considerations seem to 
fit the data better analytically and this finding is 
supported by the fractographic observations made 
by Jones and Rowcliffe [3] that fracture mostly 
originated at the surface of the specimen. 

6. Conclusions 
The expanded ring flexure tests offer a good alter- 
native to tensile tests, but the statistical distri- 
bution parameters must be corrected for non- 
uniform stress distribution which exists in the test 
specimen. An analysis and algorithm for obtaining 
these parameters is provided and has been applied 
to published literature data for silicon-based 
ceramics. 
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